
Scripting: Bashing IoT
scott.murphy@arrow‑eye.com

2018‑12‑06

Bash scripting for the win...

Announcements

Welcome to OCLUG

OCLUG Mission
OCLUG promotes and supports the use of Linux in the community of Ottawa.

OCLUG History
OCLUG was founded in March, 1997. Its membership is diverse, ranging from people without computer knowledge to
proverbial gurus. OCLUG was created to help promote Linux in the Ottawa area. We maintain several mailing lists, to help
accomplish this goal and to provide technical support. OCLUG holds monthly general meetings.

Free computer help is provided for those who want to use a computer with Linux. This technical help is provided by
volunteers and is available primarily through the Mailing list (linked on the wiki home page).

Due to some convoluted ownership issues with the domain name, we are currently operating on the linux‑ottawa.org
domain.

So... Welcome to Linux‑Ottawa

aka OCLUG
We have a few preliminary items to go over before we start the actual talks.

First: Newcomers Welcome

Welcome aboard to any new people.

Feel free to ask questions, in general interruptions are welcome and will either be answered or deferred to a
upcoming point.

If you are looking for help with a project or just getting started, we have a pre‑meeting for that purpose.

Come during the hour prior to the meeting with any queries and we'll see about helping you.

The website is: https://linux‑ottawa.org

The wiki is: https://wiki.linux‑ottawa.org (Most information is here)

The mailing list archive is located at: https://lists.linux‑ottawa.org

Venue Notes

As you know, given that you are here, we have yet another venue this month.

I'm not sure where we will be next month, as I have not found a good venue for an extended trial. Centerponte seems to
be OK, but it is booked on our night for all of 2019. We'll see how this room does, but it does have the 20:30 end of
night, so we may have to consider a different location. On the other hand, this does allow for an earlier trip to a pub.

I'm open to suggestions that are not very expensive.

Normal Meeting format

18:00 ‑ 19:00 : New2Linux hour

19:00 ‑ 21:00 : Main talk(s)

Typical format

Opening comments (like these)

Usually a shorter talk

Short break while switching speakers

A longer talk with questions

21:00 ‑ 21:15 : Wrap up, decision on if there will be a post meeting event

21:30 ‑ Done : Beer Sig (social event)

As you can see, this may need adjustment due to venue restrictions.

We now return to our regularly
scheduled talk

Our target IoT device

How many of you have WeMo units?

Belkin WeMo devices

Belkin produces a set of IoT devices for home automation.

The popular ones are wall plugs and light switches. They have added a power utilization wall plug, a dimmer unit, as well
as a crock pot unit. They also updated the wall unit from the one I have to a slimmer unit.

I have one of the original plugs here to pass around.

Control

The short configuration method is:

Plug the unit in.

Join the newly visible access point it creates via the app.

Provide credentials for your wireless network through the app.

It will join your network and also attempt to configure remote access. This you can disable after the fact.

You can now controll it via the app.

Seems simple enough, right?

Not quite

The app is only available for IOS or Android. You can't control them from your desktop.

That doesn't sound too bad now does it?

What if you...

want to use them with your own home automation?

want to gather the state of all your switches and show them?

just want to turn on or off something from your desktop system?

etc.

You can!

It is remarkably easy to do so, as long as you don't mind a bit of scripting.

With a little bash and curl, you can get the devices to perform their tasks without having to get your phone or tablet out.

Of course, this can only happen after they have been configured with the app.

(Other methods are possible, but that is something we can save for a future talk).

A WeMo Script

We will examine the script I have been using. I had a simpler one, but I ran across this one.

 1 #!/bin/bash
 2
 3 USAGE="wemo.sh [IP|network] [on|off|getstate|getsignal|getname|find]"
 4
 5 if [[$# -ne 2]] ; then
 6 echo "$USAGE"
 7 exit 0
 8 fi
 9
10 IP="$1"
11 CMD="$2"
12
13
14 # Wemo devices typically listen on 49152 or 49153, we need to test for that
15
16 getPort () {
17 PORTTEST=$(curl -s "$IP":49152 | grep "404")
18
19 if ["$PORTTEST" = ""] ; then
20 PORT=49153
21 else
22 PORT=49152
23 fi
24 }

Script Page 2

 1 turnON () {
 2 getPort
 3 curl -0 -A '' -X POST -H 'Accept: ' -H \
 4 'Content-type: text/xml; charset="utf-8"' -H \
 5 "SOAPACTION: \"urn:Belkin:service:basicevent:1#SetBinaryState\"" --data \
 6 '<?xml version="1.0" encoding="utf-8"?>
 7 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 8 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 9 <s:Body><u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
10 <BinaryState>1</BinaryState></u:SetBinaryState></s:Body>
11 </s:Envelope>' \
12 -s http://$IP:$PORT/upnp/control/basicevent1 | grep "<BinaryState" | cut -d">" \
13 -f2 | cut -d "<" -f1 | sed 's/0/OFF/g' | sed 's/1/ON/g'
14 }

Script Page 3

 1 turnOFF () {
 2 getPort
 3 curl -0 -A '' -X POST -H 'Accept: ' -H \
 4 'Content-type: text/xml; charset="utf-8"' -H \
 5 "SOAPACTION: \"urn:Belkin:service:basicevent:1#SetBinaryState\"" --data \
 6 '<?xml version="1.0" encoding="utf-8"?>
 7 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 8 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 9 <s:Body><u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
10 <BinaryState>0</BinaryState></u:SetBinaryState></s:Body>
11 </s:Envelope>' \
12 -s http://$IP:$PORT/upnp/control/basicevent1 | grep "<BinaryState" | cut -d">" \
13 -f2 | cut -d "<" -f1 | sed 's/0/OFF/g' | sed 's/1/ON/g'
14 }

Script Page 4

 1 getName () {
 2 getPort
 3 curl -0 -A '' -X POST -H 'Accept: ' -H \
 4 'Content-type: text/xml; charset="utf-8"' -H \
 5 "SOAPACTION: \"urn:Belkin:service:basicevent:1#GetFriendlyName\"" --data \
 6 '<?xml version="1.0" encoding="utf-8"?>
 7 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 8 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 9 <s:Body><u:GetFriendlyName xmlns:u="urn:Belkin:service:basicevent:1">
10 <FriendlyName></FriendlyName></u:GetFriendlyName></s:Body>
11 </s:Envelope>' \
12 -s http://$IP:$PORT/upnp/control/basicevent1 | grep "<FriendlyName" | cut \
13 -d">" -f2 | cut -d "<" -f1
14 }

Script Page 5

 1 getState () {
 2 getPort
 3 curl -0 -A '' -X POST -H 'Accept: ' -H \
 4 'Content-type: text/xml; charset="utf-8"' -H \
 5 "SOAPACTION: \"urn:Belkin:service:basicevent:1#GetBinaryState\"" --data \
 6 '<?xml version="1.0" encoding="utf-8"?><s:Envelope
 7 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 8 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 9 <s:Body><u:GetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
10 <BinaryState>1</BinaryState></u:GetBinaryState></s:Body></s:Envelope>' \
11 -s http://$IP:$PORT/upnp/control/basicevent1 | grep "<BinaryState" | cut \
12 -d">" -f2 | cut -d "<" -f1 | sed 's/0/OFF/g' | sed 's/1/ON/g'
13 }

Script Page 6

 1 getSigStrength () {
 2 getPort
 3 curl -0 -A '' -X POST -H 'Accept: ' -H \
 4 'Content-type: text/xml; charset="utf-8"' -H \
 5 "SOAPACTION: \"urn:Belkin:service:basicevent:1#GetSignalStrength\"" --data \
 6 '<?xml version="1.0" encoding="utf-8"?>
 7 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 8 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 9 <s:Body><u:GetSignalStrength xmlns:u="urn:Belkin:service:basicevent:1">
10 <GetSignalStrength>0</GetSignalStrength></u:GetSignalStrength></s:Body></s:Envelope>' \
11 -s http://$IP:$PORT/upnp/control/basicevent1 | grep "<SignalStrength" | cut \
12 -d">" -f2 | cut -d "<" -f1
13 }

Script Page 7

 1 findDevices () {
 2 which nmap > /dev/null || \
 3 (echo "nmap is not installed and it's needed for this option" ; exit 1)
 4
 5 echo "$IP" | grep -q '*'
 6 if [[$? -ne 0]] ; then
 7 echo "You need to provide a network for this option. It should be similar to 1.1.1.*"
 8 exit 1
 9 fi
10
11 echo "Finding. This may take a while..."
12 DEVICES=$(nmap -p 49153 --open "$IP" | grep 'scan report for' | awk '{print $5}')
13 if ["$DEVICES"] ; then
14 echo "IP NAME"
15 echo "---------------------"
16 for DEVICE in $DEVICES ; do
17 IP="$DEVICE"
18 echo "$DEVICE $(getName)"
19 done
20 else
21 echo "Did not find any devices"
22 fi
23 echo ""
24 }

Script page 8

 1 case "$CMD" in
 2 on) turnON ;;
 3 off) turnOFF ;;
 4 getstate) getState ;;
 5 getsignal) getSigStrength ;;
 6 getname) getName ;;
 7 find) findDevices ;;
 8 *) echo "Unknown option" && exit 1 ;;
 9 esac
10
11 exit 0

Let's examine a script run

As you can see below, if you happen to know how many are out there, you can run the find command a few times to get a
proper list. I think they need to be strobed a few times to make them responsive.

$ wemo 192.168.1.* find
Finding. This may take a while...
IP NAME

192.168.1.81 BackDeck

$ wemo 192.168.1.* find
Finding. This may take a while...
IP NAME

192.168.1.81 BackDeck
192.168.1.84 Front Lamp

$ wemo 192.168.1.* find
Finding. This may take a while...
IP NAME

192.168.1.80 Front Light
192.168.1.81 BackDeck
192.168.1.82 Guest Room
192.168.1.84 Front Lamp

Script run (continued)

$ wemo 10.9.8.84 getstate
ON
$ wemo 10.9.8.81 getstate
OFF
$ wemo 10.9.8.81 on
ON
$ wemo 10.9.8.81 getstate
ON
$ wemo 10.9.8.81 off
OFF
$ wemo 10.9.8.81 getstate
OFF
$ wemo 10.9.8.81 getsignal
89
$ for i in 80 81 82 84; do
> wemo 10.9.8.${i} getsignal
> done
76
89
91
99
$

Discussion

Resources & References

The Garfield strip is from May 1982

Belkin WeMo Units

Raspberry Pi Home Automation

Source for the code presented here

https://garfield.com/comic/1982/05/01
https://www.belkin.com/us/search?text=wemo
https://www.instructables.com/id/Raspberry-Pi-WEMO-Control-Center/
https://github.com/mississaugalug/bash/blob/master/Scripts/Networking/wemo_control.sh
Scott Murphy

