
Compressing PDF files

John C. Nash

29 November 2021

Why compress PDF files?
As documented in https://en.wikipedia.org/wiki/PDF, PDF or Portable Document Format files are a way
to present documents independent of operating system or application software. In this article, I will be
concerned with documents that are assumed to be “standard”, though I have not verified this assumption in
any of the experiments described.

Many applications and operating system features permit output as PDF files. However, the choices made
in producing these files often lead to large file-sizes. Since documents are frequently shared over email and
other communications methods, it is helpful if the file sizes are as small as possible. Hence a motivation
for compression. On the other hand, if such compression degrades images, particularly images of historical
documents, then caution in applying the compression is in order.

Many suggestions (see next section) for compressing PDF files are online services. If we have scanned a
personal document, for example a passport or driver’s licence, it seems highly dangerous to upload the scan
to what may easily be a site that is either criminal or compromised by criminals. We want a program that is
run locally.

Test files
I used the following four test files:

• F.pdf – this file represents the scans of some letters of a family member over a period of several
years. The 300dpi scanned images were converted to PDF and combined into a single document using
ImageMagick convert and Linux pdf tools. Size=66041050 bytes.

• HQR.pdf – this file is a cups-pdf “print” of an amazon.ca description of a 6V replacement battery.
Size=963515 bytes.

• nlpor.pdf – this is the PDF output of LaTEX of my 2014 book Nonlinear Parameter Optimization
using R Tools which has 304 pages. There are limited graphics (and no cover image), so the body of
the PDF is likely all text and font names, with the fonts NOT included. Size=304086 bytes.

• W.pdf - this is the Wiley “Instructions for Authors of Wires reviews” document and macro template
exported to PDF via LibreOffice. Size=100732 bytes.

Online offerings for PDF compression
In my few experiments, “free” online sites limit use either by size of file or number of files that can be
compressed. In fact, most seem to be a “come on” to get users to sign up and pay money for services that
open-source tools will carry out.

The following are the experiments I did carry out.

• https://pdfstuff.com/compress-pdf/# – fails for F.pdf. It shows an upload progress bar, but stalls at
around 58 %

1

https://en.wikipedia.org/wiki/PDF
https://pdfstuff.com/compress-pdf/#

• https://www.freepdfconvert.com/compress-pdf using “Better compression” option for F.pdf gives a
result F-freepdf.pdf of size F-freepdf.pdf. The on-screen appearance of the reduced file seems very good,
but this is NOT a free site. Attempts to upload another file offer a sign-up or a wait of an hour. (They
appear to be using IP number, as changing browser still gave the delay.)

• adobe.com has a similar site. Even removing cookies for adobe forced the browser to a sign-in or sign-up
page on a second try. HQR.pdf was reduced to 223260 bytes when it was uploaded on the single try I
made. Moreover, the resulting screen presentation was fuzzy.

Further attempts with online tools were abandoned, as it seems almost certain that the sites are data-mining.

Suggested approaches
Searches on the Internet yield many suggestions for proprietary programs, including Adobe Acrobat (??Regis-
tered symbol??) (the program rather than the online service). In this article, I am primarily interested in
solutions that are

• locally run
• open source
• work in Linux.

I would be interested to know if there are parallel solutions for Windows, MacOS or other platforms, and will
gladly collaborate, giving authorship, to detail such solutions and extend this article.

Using the search string “linux PDF compression” yields a number of hits, some of which are inappropriate.
However, the following were helpful.

https://itsfoss.com/compress-pdf-linux/

Like many other sites, this recommends using Ghostscript (/url{https://www.ghostscript.com/}) as a tool to
compress PDF files.

gs -sDEVICE=pdfwrite /
-dCompatibilityLevel=1.4 /
-dPDFSETTINGS=/prepress /
-dNOPAUSE /
-dQUIET /
-dBATCH /
-sOutputFile=compressed_PDF_file.pdf /
input_PDF_file.pdf

In the above command, the user must add the correct path of the input and output PDF files. Moreover,
the key argument in this command to control the compression level is dPDFSETTINGS. The options for this
control are

• /prepress – this is claimed to be the default setting (indeed you can enter /default) and gives a higher
quality output (300 dpi) but bigger file size. Other sites suggest /printer, which seems to give similar
results (see https://pdf.wondershare.com/pdf-knowledge/compress-pdf-linux.html).

• /ebook Medium quality output (150 dpi) with moderate output file size

• /screen Lowest quality (72 dpi) but highest compression

The site also offers a GUI (programmed in Python) tool from a related Github project https://github.com
/itsfoss/compress-pdf, though I found this to be unfinished in source code form, with TODO as the only
content of the Read.Me file, and no instructions for building the package. On the other hand, there is a link
to an appimage (https://appimage.org/) program compress-pdf-v0.1-x86_64.AppImage which works
quite well and is easy to use. However, I found it easier for my experiments to use the command-line form,
for which I saved pre-coded variants as spdf-default, spdf-printer, spdf-ebook, and spdf-screen in my
home directory bin folder.

2

https://www.freepdfconvert.com/compress-pdf
https://itsfoss.com/compress-pdf-linux/
https://www.ghostscript.com/
https://pdf.wondershare.com/pdf-knowledge/compress-pdf-linux.html
https://github.com/itsfoss/compress-pdf
https://github.com/itsfoss/compress-pdf
https://appimage.org/

https://www.shellhacks.com/linux-compress-pdf-reduce-pdf-size/

This web-page recommends using the ps2pdf program available in most Linux distribution repositories.
In Linux Mint, it is included in either the texliv-latex-recommended or texlive-latex-extra packages.
The command to carry out compression is simply

ps2pdf F.pdf F-ps2pdf.pdf

That is, compression is somehow automatic. As we shall see, the results of this are only moderately successful.

My image recoding approach - pdfreducer.sh
My own script for reducing the size of PDF files arose because I have been combining scanned document
pages into single PDF files. The page scans are generally saved as JPEG files from an IPEVO Ziggy-Cam
document camera. I have a script, jpgsindir2pdf, that converts all the files with extension jpg in a specified
directory to a single PDF file, then opens the program pdfarranger (formerly pdfshuffler) to allow rotation
and some other edits.

The Ziggy-cam has a top resolution of 2592 x 1944 pixels. This is generally equivalent to 300 dpi scan
resolution on a flatbed scanner. By experience, this is more than adequate for capturing detail in any
documents in which I am interested. I capture in colour at default colour depth of the camera or scanner.
This results in quite large files, typically 2 - 5 megabytes even as a JPEG. Moreover, it captures images,
even if the original is plain text.

The central idea of pdfreducer.sh (see the Appendix for a listing) is to use ImageMagick convert to change
the image density of each page. If we assume 300 dpi in the raw files, and set DEN=200 in the script (this is
the default), we may expect a reduction of the pdf to (2/3)2 or approximately .44 of the original.

It is important to note, however, that this process will be worse than doing nothing for some files.

Comparison of results

Table 1: File sizes observed

FILE: F HQR nlpor W
Method

original size 66041050 963515 304086 100732
freepdfconvert.com 2377592

adobe.com 223260
ps2pdf 66043576 711744 228907 77832

spdf-default 66043535 711703 228869 77792
spdf-printer 66047088 941867 238209 96583
spdf-ebook 3004947 357083 225029 46420
spdf-screen 1008612 211302 225408 33173
pdfreducer 13566502 1960712 19644715 301853

We can compute the ratio of “compressed” to original very easily. This is presented in Table 2 as a
percentage to 1 decimal. We note that pdfreducer does appallingly poorly on some files. It appears that
ps2pdf is essentially the same method as GhostScript default method spdf-default. Both spdf-ebook and
spdf-screen do a very decent job of PDF reduction, but we must be careful.

Figure 1 is a very crude attempt using LibreOffice Draw to capture parts of the original, spdf-ebook and
spdf-screen PDF files as they are seen on the screen. I make no grand claims for the reliability of this
approach, but it does indicate that the “screen” option is likely too aggressively reduced, since there is a
fuzziness in the resulting output that is easily visible. The “ebook” option does appear to be more or less
satisfactory for most of the applications I have, though I would NOT rely on it for saving archival material.

3

https://www.shellhacks.com/linux-compress-pdf-reduce-pdf-size/

Figure 1: Crude output quality comparison via screen capture

4

Table 2: Compression ratios = 100 * newsize / original-size

FILE: F HQR nlpor W
Method

freepdfconvert.com 3.6 0.0 0.0 0.0
adobe.com 0.0 23.2 0.0 0.0
ps2pdf 100.0 73.9 75.3 77.3

spdf-default 100.0 73.9 75.3 77.2
spdf-printer 100.0 97.8 78.3 95.9
spdf-ebook 4.6 37.1 74.0 46.1
spdf-screen 1.5 21.9 74.1 32.9
pdfreducer 20.5 203.5 6460.2 299.7

My tentative conclusion is that I will likely use spdf-ebook for reducing the size of PDF files when I need
to email them or put them on web-sites that are non-archival. I will likely use my own pdfreducer script
when I know that the documents to be reduced have come from scans or document camera page images. The
output from pdfreducer in such cases is a significant reduction in storage without appreciable compromise
in image quality.

Extension and use

If spe is used as a standard tool, it can be used to reduce storage space for PDF files in archived collections.
This was tested with a collection called jkeep by

• making a list of all files in the directory that have the extension (in either upper, lower or mixed case)
.pdf.

• applying spe to these.

This process reduced the storage from 9835680 to 7809820 bytes. However, a few (in fact, 38) applications
of spe generated errors and the output files were unsatisfactory. There were also cases where it did not
compress files. Of 4058 PDF files, 3325 were reduced in size (though possibly in some cases with errors),
while 733 were left unchanged.

While it should be possible to detect the errors when Ghostscript (i.e., gs) is run, my experiments so far have
shown that the gs command does not yield a non-zero return code when GhostScript emits error messages
to the stderr or stdout channels. Without the return code, we must examine this output for character
strings that indicate an error. I have, however, found cases (e.g., ScanComfortsuites160103.pdf) for which
GhostScript shows an error, but the shrunk pdf is apparently satisfactory.

These ideas have been incorporated into the single file PDF shrink script spe, which is then called by the
directory tree processor dirtreespe. However, my opinion is that this automated compression of a block of
files should not be entirely trusted as yet (November 29, 2021).

Appendix: Scripts mentioned
jpgsindir2pdf

#!/bin/bash
jpgsindir2pdf -- convert jpgs to pdf and name for directory

echo "jpgsindir2pdf"

SAVEIFS=$IFS
IFS=$(echo -en "\n\b")

5

CDIR=$PWD
echo "CDIR=$CDIR"
#read tmp
echo "parameter=$1"
NAME=$(basename "$1") # base of file name
echo "NAME=$NAME"
#read tmp
cd $NAME
pwd
echo "have we changed directory?"
#read tmp

FILES=*.jpg
for f in $FILES
do

TT=`basename -s .jpg $f`
convert $f $TT.pdf
echo "$TT.pdf"

done

pdftk *.pdf cat output ../$NAME.pdf
echo "Created $NAME.pdf"
cd ..

pwd
ls

echo "now arrange"
#read tmp

pdfarranger $NAME.pdf

echo "delete intermediate pdf files"
read tmp
rm $NAME/*.pdf

IFS=$SAVEIFS
echo "done!"

pdfreducer

#!/bin/bash
pdfreducer.sh
DEN=200
standardizes density at $DEN
make current working directory == must change name
or will overlap
WD=wd`date +%s`
echo "working dir=$WD"
read tmp
temporary working directory
Be nice to show a sign that process is working
mkdir $WD
save file to working directory

6

cp $1 $WD/
cd $WD/
then split apart
pdftk $1 burst
remove working file
rm $(basename "$1" .pdf).pdf
convert to jpg with appropriate density
for fn in ./pg*.pdf; do

convert -density $DEN $fn $(basename "$fn" .pdf).jpg
done
rm pg*.pdf
convert pg*.jpg new.pdf
ls -al
read tmp
echo "remove temporary pdfs and working directory"
read tmp
cd ..
cp $WD/new.pdf ./
mv new.pdf $(basename "$1" .pdf).red.pdf
rm -r $WD

shrinkpdf.sh

This version was based on merged suggestions found on the Web.

#!/bin/sh
JN version of spdf-ebook == spe 2021-11-28
OIFS=$IFS # doesn't seem to work in Mint
echo "IFS=$IFS"
change IFS to only use newline
IFS='
'
gs -sDEVICE=pdfwrite -dCompatibilityLevel=1.4 -dPDFSETTINGS=/ebook -dNOPAUSE -dQUIET -dBATCH -sOutputFile=out.pdf $1 >tmplog.txt

grep "**** Error" tmplog.txt > tttt
size=$(wc -c <"tttt")
if [$size != 0]; then

echo "FAIL"
exit 1

else
echo "NO ERROR"

fi
get sizes
A=$((`du --bytes out.pdf | cut -f1`))
echo "New file is $A bytes"
B=$((`du --bytes $1 | cut -f1`))
note the brackets to convert string to number
echo "Original is $B bytes"
if [$B -gt $A];
then

echo "Success! -- original in $1.orig"
mv $1 $1.orig
mv out.pdf $1

else
echo "Unchanged!"

7

rm out.pdf
fi
IFS=$OIFS

spdf-default

#!/bin/sh
JN version of spdf-default
gs -sDEVICE=pdfwrite -dCompatibilityLevel=1.4 -dPDFSETTINGS=/default /

-dNOPAUSE -dQUIET -dBATCH -sOutputFile=out.pdf $1
mv out.pdf $1.spdf-d

spe (formerly spdf-ebook)

This script has been upgraded as the one most likely to be used. It has also been renamed spe for ease of
typing.

#!/bin/sh
JN version of spdf-ebook == spe 2021-11-28
OIFS=$IFS # doesn't seem to work in Mint
echo "IFS=$IFS"
change IFS to only use newline
IFS='
'
gs -sDEVICE=pdfwrite -dCompatibilityLevel=1.4 -dPDFSETTINGS=/ebook -dNOPAUSE -dQUIET -dBATCH -sOutputFile=out.pdf $1 >tmplog.txt

grep "**** Error" tmplog.txt > tttt
size=$(wc -c <"tttt")
if [$size != 0]; then

echo "FAIL"
exit 1

else
echo "NO ERROR"

fi
get sizes
A=$((`du --bytes out.pdf | cut -f1`))
echo "New file is $A bytes"
B=$((`du --bytes $1 | cut -f1`))
note the brackets to convert string to number
echo "Original is $B bytes"
if [$B -gt $A];
then

echo "Success! -- original in $1.orig"
mv $1 $1.orig
mv out.pdf $1

else
echo "Unchanged!"
rm out.pdf
exit 99

fi
IFS=$OIFS
cleanup -- not $1.orig is left for checking
rm tttt
rm tmplog.txt

8

spdf-prepress

#!/bin/sh
JN version of spdf-prepress
gs -sDEVICE=pdfwrite -dCompatibilityLevel=1.4 -dPDFSETTINGS=/prepress /

-dNOPAUSE -dQUIET -dBATCH -sOutputFile=out.pdf $1
mv out.pdf $1.spdf-pre

spdf-printer

#!/bin/sh
JN version of spdf-printer
gs -sDEVICE=pdfwrite -dCompatibilityLevel=1.4 -dPDFSETTINGS=/printer /

-dNOPAUSE -dQUIET -dBATCH -sOutputFile=out.pdf $1
mv out.pdf $1.spdf-pri

spdf-screen

#!/bin/sh
JN version of spdf-screen
gs -sDEVICE=pdfwrite -dCompatibilityLevel=1.4 -dPDFSETTINGS=/screen /

-dNOPAUSE -dQUIET -dBATCH -sOutputFile=out.pdf $1
mv out.pdf $1.spdf-s

dirtreespe – shrink pdfs in a directory tree

#!/bin/sh
JN version of spdf-ebook on a tree == dirtreespe
$1 gives the top tree dir
TT=`tstamp.sh`
echo $TT
echo "${TT} spe error file"
FF="${TT}speErrors.txt"
echo $FF
echo "$TT spe error file" >$FF

szold=`du -s $1 | cut -f1`
echo "globbing $1 size=$szold"
find $1 -iname "*.pdf" > glob.txt
i=0
while read f;
do

i=$((i+1))
note how incrementing is done
echo "$i : $f"

reduce size
`spe $f`
note the quotes to avoid spaces
also cannot seem to call my own script, but cp works
cp "$f" /tmp/w.pdf
spe /tmp/w.pdf
ret=$?
echo "return code=$ret"
if ["$ret" = '0']; then

echo "Save back $f"

9

mv /tmp/w.pdf "$f"
mv /tmp/w.pdf.orig "$f.orig"

else
if ["$ret" = '1']; then

echo "Error for $f"
echo "$f" >> $FF

else
echo "Unchanged for $f"

fi
fi

rm "$f.orig"
done <glob.txt
echo "============================="
mv glob.txt "../${TT}glob.txt"
sznew=`du -s $1 | cut -f1`
echo "Size Before=$szold After=$sznew"
echo "DONE!"

10

	Why compress PDF files?
	Test files
	Online offerings for PDF compression
	Suggested approaches
	https://itsfoss.com/compress-pdf-linux/
	https://www.shellhacks.com/linux-compress-pdf-reduce-pdf-size/

	My image recoding approach - pdfreducer.sh
	Comparison of results
	Extension and use

	Appendix: Scripts mentioned
	jpgsindir2pdf
	pdfreducer
	shrinkpdf.sh
	spdf-default
	spe (formerly spdf-ebook)
	spdf-prepress
	spdf-printer
	spdf-screen
	dirtreespe – shrink pdfs in a directory tree

