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Who am I   

 Qingwei Zhang, a software development engineer with 5 years of 
experience in high technology and finance. 

 A previous small business entrepreneurs 

 Background in computer networks 

 Motivated to introduce a VPN that avoids the problems in both crypto and 
implementation 

 



What is WireGuard? 
 

 Layer 3 secure network tunnel for IPv4 and IPv6. 

 Designed for the Linux kernel 

 Slower cross platform implementations. 

 UDP-based. Punches through firewalls. 

 Modern conservative cryptographic principles. 

 Emphasis on simplicity and auditability. 

 Authentication model similar to SSH’s ./.ssh/authenticated_keys. 

 Replacement for OpenVPN and IPsec. 

 Grew out of a stealth rootkit project. 

 



Security Design Principle 1: Easily 
Auditable 
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Security Design Principle 1: Easily 
Auditable 

 

IPsec 
(XFRM+Strongswan) 

419,792 LoC 

SoftEther 
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OpenVPN 
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WireGuard 
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Security Design Principle 2: 
Simplicity of Interface 

 

 WireGuard presents a normal network interface: 

 

# iplink add wg0 type WireGuard 

# ipaddress add 192.168.3.2/24 dev wg0 

# iproute add default via wg0 

# ifconfig wg0 … 

# iptables–A INPUT -iwg0 … 

 

/etc/hosts.{allow,deny}, bind(), … 

 

 Everything that ordinarily builds on top of network interfaces –like eth0or wlan0–can 
build on top of wg0. 

 



Cryptokey Routing 

 
 The fundamental concept of any VPN is an 

association between public keys of peers and 
the IP addresses that those peers are allowed 
to use. 

 A WireGuard interface has: 
 A private key 

 A listening UDP port 

 A list of peers 

 A peer: 
 Is identified by its public key 

 Has a list of associated tunnel IPs 

 Optionally has an endpoint IP and port 

 



Cryptokey Routing 
PUBLIC KEY :: IP ADDRESS 



CryptokeyRouting 

 Server Configure 
 

[Interface] 

PrivateKey= yAnz5TF+lXXJte14tji3zlMNq+hd2rYUIgJBgB3fBmk= 

ListenPort= 41414 

 

[Peer] 

PublicKey= xTIBA5rboUvnH4htodjb6e697QjLERt1NAB4mZqp8Dg= 

AllowedIPs= 10.192.122.3/32,10.192.124.1/24 

 

[Peer] 

PublicKey= TrMvSoP4jYQlY6RIzBgbssQqY3vxI2Pi+y71lOWWXX0= 

AllowedIPs= 10.192.122.4/32,192.168.0.0/16 

 Client Configure 
 

[Interface] 

PrivateKey= gI6EdUSYvn8ugXOt8QQD6Yc+JyiZxIhp3GInSWRfWGE= 

ListenPort= 21841 

 

[Peer] 

PublicKey= 
HIgo9xNzJMWLKASShiTqIybxZ0U3wGLiUeJ1PKf8ykw=Endpoint = 
192.95.5.69:41414 

AllowedIPs= 0.0.0.0/0 



Cryptokey Routing 

Userspace:  
send(packet) 

Linux kernel:  
Ordinary 

routing table 
→ wg0 

WireGuard:  
Destination IP 

address → 
which peer 

WireGuard: 
encrypt(packet) 
send(encrypted) 

→ peer’s 
endpoint 

WireGuard: 
recv(encrypte

d)  

WireGuard: 
decrypt(packe

t) → which 
peer 

WireGuard:  
Source IP 

address ←→ 
peer’s allowed 

IPs  

Linux:  
Hand packet 

to networking 
stack 



Cryptokey Routing 

Makes system administration very simple.  

 If it comes from interface wg0 and is from 
your friends Bob’ tunnel IP address of 
192.168.5.17, then the packet definitely came 
from Bob.  

The iptables rules are plain and clear 



Timers: A Stateless Interface for a 
Stateful Protocol 

As mentioned prior, WireGuard appears “stateless” to 
user space; you set up your peers, and then it just 
works.  

A series of timers manages session state internally, 
invisible to the user.   

 Every transition of the state machine has been 
accounted for, so there are no undefined states or 
transitions.  

 Event based. 



Timers 

• If no session has been established for 120 seconds,send 
handshake initiation. User space sends packet.  

•  Resend handshake initiation.   No handshake response after 
5 seconds.  

• Send an encrypted empty packet after 10 seconds, if we 
don’t have anything else to send during that time. 

Successful authentication of 
incoming packet. 

• Send handshake initiation. 
No successfully authenticated 

incoming packets after 15 
seconds. 



Security Design Principle 2: Simplicity 
of Interface  

 The interface appears stateless to the system administrator.  

  Add an interface – wg0, wg1, wg2, … – configure its peers, 
and immediately packets can be sent.  

  If it’s not set up correctly, most of the time it will just refuse to 
work, rather than running insecurely: fails safe, rather than 
fails open.   

 Endpoints roam, like in mosh.  

  Identities are just the static public keys, just like SSH.  
Everything else, like session state, connections, and so forth, is 
invisible to admin. 



Demo 



Simple Composable Tools 

 Since wg(8) is a very simple tool, that works 
with ip(8), other more complicated tools can be 
built on top. 

 Integration into various network managers:  

  OpenWRT  

  OpenRC netifrc  

  NixOS  

  systemd-networkd  

  LinuxKit  

  Ubiquiti’s EdgeOS  

  NetworkManager 



Simple Composable Tools: wg-quick 

 Simple shell script  

# wg-quick up vpn0  

# wg-quick down vpn0  

 

 /etc/wireguard/vpn0.conf:  

[Interface] Address = 10.200.100.2 DNS = 10.200.100.1  

PostDown = resolvconf -d %i  

PrivateKey = uDmW0qECQZWPv4K83yg26b3L4r93HvLRcal997IGlEE=  

 

[Peer]  

PublicKey = +LRS63OXvyCoVDs1zmWRO/6gVkfQ/pTKEZvZ+CehO1E= AllowedIPs = 
0.0.0.0/0  

Endpoint = demo.wireguard.io:51820 



Security Design Principle 3: Static Fixed 
Length Headers 

All packet headers have fixed width fields, so no 
parsing is necessary. 
 Eliminates an entire class of vulnerabilities. 

 No parsers → no parser vulnerabilities. 

  Quite a different approach to formats like 
ASN.1/X.509 or even variable length IP and TCP 
packet headers. 



Security Design Principle 4: Static 
Allocations and Guarded State 

 

 All state required for WireGuard to work is allocated during config. 

  No memory is dynamically allocated in response to received packets. 

  Eliminates another entire classes of vulnerabilities. 

  Places an unusual constraint on the crypto, since we are operating over a finite 
amount of preallocated memory. 

  No state is modified in response to unauthenticated packets. 

  Eliminates yet another entire class of vulnerabilities. 

  Also places unusual constraints on the crypto. 



Security Design Principle 5: Stealth 

 

  Some aspects of WireGuard grew out of akernel 
rootkit project. 

  Should not respond to any unauthenticated 
packets. 

  Hinder scanners and service discovery. 

  Service only responds to packets with correct 
crypto. 

  Not chatty at all. 

  When there’s no data to be exchanged, both 
peers become silent. 



Security Design Principle 6: Solid 
Crypto 

 

  We make use of Noise Protocol Framework – noiseprotocol.org 

  WireGuard was involved early on with the design of Noise, ensuring it could do 
what we needed. 

  Custom written very specific implementation of Noise_IKpsk2 for the kernel. 

  Related in spirit to the Signal Protocol. 

  The usual list of modern desirable properties you’d want from an 
authenticated key exchange 

  Modern primitives: Curve25519, Blake2s, ChaCha20, Poly1305 

  Lack of cipher agility! (Opinionated.) 



Security Design Principle 6: Solid 
Crypto 

 

 

 Strong key agreement & authenticity 

  Key-compromise impersonation resistance 

  Unknown key-share attack resistance 

  Key secrecy 

  Forward secrecy 

  Session uniqueness 

  Identity hiding 

  Replay-attack prevention, while allowing for 
network packet reordering 



Crypto Designed for Kernel 

 Design goals of guarded memory safety, few allocations, etc have direct 
effect on cryptography used. 

  Ideally be 1-RTT. 

  Fast crypto primitives. 

  Clear division between slowpath for ECDH and fastpath for symmetric 
crypto. 

  Handshake in kernel space, instead of punted to userspace daemon like 
IKE/IPsec. 

  Allows for more efficient and less complex protocols. 

  Exploit interactions between handshake state and packet encryption state. 



Multicore Cryptography 

 

 Encryption and decryption of 
packets can be spread out to all  
cores in parallel. 

  Nonce/sequence number checking, 
netif_rx, and transmission must be 
done in serial order. 

  Requirement: fast for single flow 
traffic in addition to multiflow traffic. 
  Different from usual assumptions. 



Multicore Cryptography 

 

 Single queue, shared by all CPUs, rather than queue per CPU 

  No reliance on process scheduler, which tends to add latency when waiting for 
packets to complete 

  Serial transmission queue waits on ordered completion of parallel queue items 

  Using netif_receive_skb instead of netif_rx to push back on encryption queue 

  Bunching bundles of packets together to be encrypted on one CPU results 
in high performance gains 

  How to choose the size of the bundle? 



Multicore Cryptography 



Performance 



Performance 

 
  Being in kernel space means that it is fast and low latency. 

  No need to copy packets twice between user space and kernel space. 

  ChaCha20Poly1305 is extremely fast on nearly all hardware, and safe. 
  AES-NI is fast too, obviously, but as Intel and ARM vector instructions become 

wider and wider, ChaCha is handedly able to compete with AES-NI, and even 
perform better in some cases. 

  AES is exceedingly difficult to implement performantly and safely (no cache-timing 
attacks) without specialized hardware. 

  ChaCha20 can be implemented efficiently on nearly all general purpose processors. 

  Simple design of WireGuard means less overhead, and thus better 
performance. 
  Less code → Faster program? Not always, but in this case, certainly. 



Measurements  



Confluence of Principles → The Key 
Exchange 



The Key Exchange  

 

 The key exchange designed to keep our principles static allocations, 
guarded state, fixed length headers, and stealthiness. 

  In order for two peers to exchange data, they must first derive ephemeral 
symmetric crypto session keys from their static public keys. 

  Either side can reinitiate the handshake to derive new session keys. 

  So initiator and responder can “swap” roles. 

  Invalid handshake messages are ignored, maintaining stealth 



The Key Exchange: (Elliptic Curve) 
Diffie-Hellman Review 

private A = random()  

public A = derive_public(private A)  

 

private B = random()  

public B = derive_public(private B) 

 

ECDH(private A, public B) == ECDH(private 
B, public A) 


