
WireGuard
A next generation VPN tunnel

PRESENTED BY QINGWEI “VINCENT” ZHANG

MARCH 7, 2019.

OTTAWA CANADA LINUX USER GROUP.

Who am I

 Qingwei Zhang, a software development engineer with 5 years of
experience in high technology and finance.

 A previous small business entrepreneurs

 Background in computer networks

 Motivated to introduce a VPN that avoids the problems in both crypto and
implementation

What is WireGuard?

 Layer 3 secure network tunnel for IPv4 and IPv6.

 Designed for the Linux kernel

 Slower cross platform implementations.

 UDP-based. Punches through firewalls.

 Modern conservative cryptographic principles.

 Emphasis on simplicity and auditability.

 Authentication model similar to SSH’s ./.ssh/authenticated_keys.

 Replacement for OpenVPN and IPsec.

 Grew out of a stealth rootkit project.

Security Design Principle 1: Easily
Auditable

OpenVPN

Linux XFRM

StrongSwan

SoftEther

WireGuard

116,730 LoC
Plus OpenSSL!

119,363 LoC
Plus
StrongSwan!

405,894 LoC
Plus XFRM!

329,853 LoC

3,771 LoC

Security Design Principle 1: Easily
Auditable

IPsec
(XFRM+Strongswan)

419,792 LoC

SoftEther
329,853LoC

OpenVPN
119,363
LoC

WireGuard
3771 LoC

Security Design Principle 2:
Simplicity of Interface

 WireGuard presents a normal network interface:

iplink add wg0 type WireGuard

ipaddress add 192.168.3.2/24 dev wg0

iproute add default via wg0

ifconfig wg0 …

iptables–A INPUT -iwg0 …

/etc/hosts.{allow,deny}, bind(), …

 Everything that ordinarily builds on top of network interfaces –like eth0or wlan0–can
build on top of wg0.

Cryptokey Routing

 The fundamental concept of any VPN is an

association between public keys of peers and
the IP addresses that those peers are allowed
to use.

 A WireGuard interface has:
 A private key

 A listening UDP port

 A list of peers

 A peer:
 Is identified by its public key

 Has a list of associated tunnel IPs

 Optionally has an endpoint IP and port

Cryptokey Routing
PUBLIC KEY :: IP ADDRESS

CryptokeyRouting

 Server Configure

[Interface]

PrivateKey= yAnz5TF+lXXJte14tji3zlMNq+hd2rYUIgJBgB3fBmk=

ListenPort= 41414

[Peer]

PublicKey= xTIBA5rboUvnH4htodjb6e697QjLERt1NAB4mZqp8Dg=

AllowedIPs= 10.192.122.3/32,10.192.124.1/24

[Peer]

PublicKey= TrMvSoP4jYQlY6RIzBgbssQqY3vxI2Pi+y71lOWWXX0=

AllowedIPs= 10.192.122.4/32,192.168.0.0/16

 Client Configure

[Interface]

PrivateKey= gI6EdUSYvn8ugXOt8QQD6Yc+JyiZxIhp3GInSWRfWGE=

ListenPort= 21841

[Peer]

PublicKey=
HIgo9xNzJMWLKASShiTqIybxZ0U3wGLiUeJ1PKf8ykw=Endpoint =
192.95.5.69:41414

AllowedIPs= 0.0.0.0/0

Cryptokey Routing

Userspace:
send(packet)

Linux kernel:
Ordinary

routing table
→ wg0

WireGuard:
Destination IP

address →
which peer

WireGuard:
encrypt(packet)
send(encrypted)

→ peer’s
endpoint

WireGuard:
recv(encrypte

d)

WireGuard:
decrypt(packe

t) → which
peer

WireGuard:
Source IP

address ←→
peer’s allowed

IPs

Linux:
Hand packet

to networking
stack

Cryptokey Routing

Makes system administration very simple.

 If it comes from interface wg0 and is from
your friends Bob’ tunnel IP address of
192.168.5.17, then the packet definitely came
from Bob.

The iptables rules are plain and clear

Timers: A Stateless Interface for a
Stateful Protocol

As mentioned prior, WireGuard appears “stateless” to
user space; you set up your peers, and then it just
works.

A series of timers manages session state internally,
invisible to the user.

 Every transition of the state machine has been
accounted for, so there are no undefined states or
transitions.

 Event based.

Timers

• If no session has been established for 120 seconds,send
handshake initiation. User space sends packet.

• Resend handshake initiation. No handshake response after
5 seconds.

• Send an encrypted empty packet after 10 seconds, if we
don’t have anything else to send during that time.

Successful authentication of
incoming packet.

• Send handshake initiation.
No successfully authenticated

incoming packets after 15
seconds.

Security Design Principle 2: Simplicity
of Interface

 The interface appears stateless to the system administrator.

 Add an interface – wg0, wg1, wg2, … – configure its peers,
and immediately packets can be sent.

 If it’s not set up correctly, most of the time it will just refuse to
work, rather than running insecurely: fails safe, rather than
fails open.

 Endpoints roam, like in mosh.

 Identities are just the static public keys, just like SSH.
Everything else, like session state, connections, and so forth, is
invisible to admin.

Demo

Simple Composable Tools

 Since wg(8) is a very simple tool, that works
with ip(8), other more complicated tools can be
built on top.

 Integration into various network managers:

 OpenWRT

 OpenRC netifrc

 NixOS

 systemd-networkd

 LinuxKit

 Ubiquiti’s EdgeOS

 NetworkManager

Simple Composable Tools: wg-quick

 Simple shell script

wg-quick up vpn0

wg-quick down vpn0

 /etc/wireguard/vpn0.conf:

[Interface] Address = 10.200.100.2 DNS = 10.200.100.1

PostDown = resolvconf -d %i

PrivateKey = uDmW0qECQZWPv4K83yg26b3L4r93HvLRcal997IGlEE=

[Peer]

PublicKey = +LRS63OXvyCoVDs1zmWRO/6gVkfQ/pTKEZvZ+CehO1E= AllowedIPs =
0.0.0.0/0

Endpoint = demo.wireguard.io:51820

Security Design Principle 3: Static Fixed
Length Headers

All packet headers have fixed width fields, so no
parsing is necessary.
 Eliminates an entire class of vulnerabilities.

 No parsers → no parser vulnerabilities.

 Quite a different approach to formats like
ASN.1/X.509 or even variable length IP and TCP
packet headers.

Security Design Principle 4: Static
Allocations and Guarded State

 All state required for WireGuard to work is allocated during config.

 No memory is dynamically allocated in response to received packets.

 Eliminates another entire classes of vulnerabilities.

 Places an unusual constraint on the crypto, since we are operating over a finite
amount of preallocated memory.

 No state is modified in response to unauthenticated packets.

 Eliminates yet another entire class of vulnerabilities.

 Also places unusual constraints on the crypto.

Security Design Principle 5: Stealth

 Some aspects of WireGuard grew out of akernel
rootkit project.

 Should not respond to any unauthenticated
packets.

 Hinder scanners and service discovery.

 Service only responds to packets with correct
crypto.

 Not chatty at all.

 When there’s no data to be exchanged, both
peers become silent.

Security Design Principle 6: Solid
Crypto

 We make use of Noise Protocol Framework – noiseprotocol.org

 WireGuard was involved early on with the design of Noise, ensuring it could do
what we needed.

 Custom written very specific implementation of Noise_IKpsk2 for the kernel.

 Related in spirit to the Signal Protocol.

 The usual list of modern desirable properties you’d want from an
authenticated key exchange

 Modern primitives: Curve25519, Blake2s, ChaCha20, Poly1305

 Lack of cipher agility! (Opinionated.)

Security Design Principle 6: Solid
Crypto

 Strong key agreement & authenticity

 Key-compromise impersonation resistance

 Unknown key-share attack resistance

 Key secrecy

 Forward secrecy

 Session uniqueness

 Identity hiding

 Replay-attack prevention, while allowing for
network packet reordering

Crypto Designed for Kernel

 Design goals of guarded memory safety, few allocations, etc have direct
effect on cryptography used.

 Ideally be 1-RTT.

 Fast crypto primitives.

 Clear division between slowpath for ECDH and fastpath for symmetric
crypto.

 Handshake in kernel space, instead of punted to userspace daemon like
IKE/IPsec.

 Allows for more efficient and less complex protocols.

 Exploit interactions between handshake state and packet encryption state.

Multicore Cryptography

 Encryption and decryption of
packets can be spread out to all
cores in parallel.

 Nonce/sequence number checking,
netif_rx, and transmission must be
done in serial order.

 Requirement: fast for single flow
traffic in addition to multiflow traffic.
 Different from usual assumptions.

Multicore Cryptography

 Single queue, shared by all CPUs, rather than queue per CPU

 No reliance on process scheduler, which tends to add latency when waiting for
packets to complete

 Serial transmission queue waits on ordered completion of parallel queue items

 Using netif_receive_skb instead of netif_rx to push back on encryption queue

 Bunching bundles of packets together to be encrypted on one CPU results
in high performance gains

 How to choose the size of the bundle?

Multicore Cryptography

Performance

Performance

 Being in kernel space means that it is fast and low latency.

 No need to copy packets twice between user space and kernel space.

 ChaCha20Poly1305 is extremely fast on nearly all hardware, and safe.
 AES-NI is fast too, obviously, but as Intel and ARM vector instructions become

wider and wider, ChaCha is handedly able to compete with AES-NI, and even
perform better in some cases.

 AES is exceedingly difficult to implement performantly and safely (no cache-timing
attacks) without specialized hardware.

 ChaCha20 can be implemented efficiently on nearly all general purpose processors.

 Simple design of WireGuard means less overhead, and thus better
performance.
 Less code → Faster program? Not always, but in this case, certainly.

Measurements

Confluence of Principles → The Key
Exchange

The Key Exchange

 The key exchange designed to keep our principles static allocations,
guarded state, fixed length headers, and stealthiness.

 In order for two peers to exchange data, they must first derive ephemeral
symmetric crypto session keys from their static public keys.

 Either side can reinitiate the handshake to derive new session keys.

 So initiator and responder can “swap” roles.

 Invalid handshake messages are ignored, maintaining stealth

The Key Exchange: (Elliptic Curve)
Diffie-Hellman Review

private A = random()

public A = derive_public(private A)

private B = random()

public B = derive_public(private B)

ECDH(private A, public B) == ECDH(private
B, public A)

