Scaling a Spam Filter

2017-05-04
 Dianne Skoll
 Roaring Penguin Software Inc.
 dfs@roaringpenguin.com

Outline

- Short History of Roaring Penguin
- CanIt Architecture and Capabilities
- Scaling a Spam Filter
- Q&A

History of Roaring Penguin

Started in 1999 by Dianne Skoll as Linux consultancy.

History of Roaring Penguin

- First release of MIMEDefang (GPL'd email filtering framework) in 2000.
- First commercial release of CanIt in 2002.
- Currently 12 employees; filtering mail for hundreds of thousands of people both with SAAS and on-premise appliances.

Our Toolkit

- Linux OS for desktop and server
 - Even non-technical employees
- CanIt is developed in:
 - Perl: Filtering framework
 - PHP: Web interface
 - C: Performance-critical components
- Revision control: git
- Continuous integration: buildbot

Our Toolkit - 2

- Ticket-tracking: RT (Request Tracker) from Best Practical
- Documentation production: LaTeX and htlatex
- Monitoring: Xymon (used to be "Hobbit")
- Metric tracking: Munin
- All of our tools are free and open-source!

CanIt

- CanIt is a family of email security products:
 - CanIt-PRO: Suitable for one organization
 - CanIt-Domain-PRO: Multi-tenant version suitable for multiple organizations
 - Hosted CanIt: CanIt-Domain-PRO as a service.
 - Secure Messaging add-on
 - Email Archiving add-on

Canlt High-Level Architecture

CanIt High-Level Architecture

- MTA is Sendmail
- Filtering is done via Sendmail's "Milter" API.
- Basic filtering framework is MIMEDefang, consisting of a C supervisor and Perl workers.
- Filtering code is Perl.
- UI is PHP.

The Elephant in the Room

 A brief digression as I address the elephant in the room, especially for those of you who met me more than a couple of years ago...

The Elephant in the Room

Our database is PostgreSQL

Typical SMTP Conversation

- C: Connect to server
- S: 220 server hostname ESMTP Sendmail 8.14.4...
- C: HELO client_hostname
- S: 250 server hostname Hello client hostname, pleased...
- C: MAIL FROM:<dfs@roaringpenguin.com>
- S: 250 2.1.0 <dfs@roaringpenguin.com>... Sender ok
- C: RCPT TO:<foo@roaringpenguin.com>
- S: 250 2.1.5 <foo@roaringpenguin.com>... Recipient ok
- C: RCPT TO:<bar@roaringpenguin.com>
- S: 250 2.1.5 <bar@roaringpenguin.com>... Recipient ok
- C: DATA
- S: 354 Enter mail, end with "." on a line by itself
- C: (transmits message followed by dot)
- S: 250 2.0.0 h0AJVcGM007686 Message accepted for delivery
- C: QUIT
- S: 221 2.0.0 server hostname closing connection

SMTP Conversation with Milter

C :	Connect to server
S :	220 server_hostname ESMTP Sendmail 8.14.4
C :	HELO client hostname
S :	250 server_hostname Hello client_hostname, pleased
C :	MAIL FROM: <dfs@roaringpenguin.com></dfs@roaringpenguin.com>
S :	250 2.1.0 <dfs@roaringpenguin.com> Sender ok</dfs@roaringpenguin.com>
C :	RCPT TO: <foo@roaringpenguin.com></foo@roaringpenguin.com>
S :	250 2.1.5 <foo@roaringpenguin.com> Recipient ok</foo@roaringpenguin.com>
C :	RCPT TO: <bar@roaringpenguin.com></bar@roaringpenguin.com>
S :	250 2.1.5 <bar@roaringpenguin.com> Recipient ok</bar@roaringpenguin.com>
C :	DATA
S :	354 Enter mail, end with "." on a line by itself
C :	(transmits message followed by dot)
S :	250 2.0.0 h0AJVcGM007686 Message accepted
C :	QUIT
S :	221 2.0.0 server_hostname closing connection
	* = response-modification opportunity

All the Moving Parts - 2

- On small installations: All pieces can run on the same machine (or even virtual machine).
 - A small installation is one that does < 50k messages per day.
- On larger installations, pieces may be split out over multiple hosts.
- You can have multiple scanners and Storage Manager nodes
- Still only one (active) database per cluster!

CanIt Features

- Hierarchical administration: Accounts can have sub-accounts and so forth.
 - Resellers can make containers for their clients and manage them all.
 - Each client can only see his or her container.
- Per-user settings, block/allow lists, rules, and preferences.
 - No arbitrary limit on the number of rules a user can make

Canlt Features - 2

- Support for SPF, DMARC, DKIM, name-youremail-buzzword.
- Fully IPv6 compliant.
- Novel Bayes implementation that shares votes across our entire user base while still allowing per-user statistics.
- Outbound rate-limiting to catch internal spammers or compromised users.

Canlt Super-Duper Features - 3

- Custom Rules that support logical operators (AND/OR) and two-level grouping.
 - The rule is entered with a GUI and then we compile it down to Perl for speed.
- Admins only: Log-indexing and searching.
 - You have full visibility into your mail logs via the Web interface.
- Integration with LDAP/IMAP/POP3 for authentication and alias resolution (LDAP only)

Custom Rules – Graphical Input

Custom Rules

•

Custom Rules	(Online Docum	entation)			
legular Expression Tester					
Field	Relation	Value	Logical Operator	Delete?	
Envelope Sender 🗸 🗸	ls 🗸	dfs@roaringpenguin.com	AND 🗸		
Connecting Relay Address 🔹 🗸	Is In Network 🗸 🗸	192.168.2.0/24	+ New Clause		
OR 🗸					
Envelope Recipient 🗸 🗸	ls 🗸	dfs@roaringpenguin.com	AND 🗸		
Connecting Relay Address 🔹 🗸	Is NOT In Network 🗸 🗸	192.168.2.0/24	+ New Clause		
- New Group					

Custom Rules – Compiled Output

```
my $real_relay_address = $message->get_real_relay_address() || '';
my $envelope_sender = lc($message->get_envelope_sender());
my $envelope recipients = [ map { lc } @{$message->get envelope recipients()} ];
```

```
if ((($envelope_sender eq "dfs\x{40}roaringpenguin.com") &&
    (CanIt::CompoundRuleUtils::is_in_network($real_relay_address, "192.168.2.0/24") )) ||
    ((grep { $_ eq "dfs\x{40}roaringpenguin.com" } @{$envelope_recipients}) &&
    (!CanIt::CompoundRuleUtils::is_in_network($real_relay_address, "192.168.2.0/24") ))) {
        return 1;
} else {
        return 0;
    }
}
```

```
}
```


Enough with the Features!

- OK. Enough. All those features are great. We understand that CanIt is insanely flexible and powerful.
- But can it handle load?
- Is it scalable?
- What has Roaring Penguin learned about scalability in the last 15 years?

Email Filtering Hates You

- Email filtering is just about the **worst** use-case for stressing out a computer.
- The filtering process is typically CPU-intensive.
- High-volume mail delivery hammers your disks.

Email Filtering - 2

- Tracking everything in a database **really** hammers your disks.
 - There are way more write transactions than read transactions! People don't bother checking their quarantines often.
 - This is precisely the *opposite* pattern for which most database systems are optimized.

Email Filtering - 3

- People expect a responsive GUI.
- Rendering a page may take from 10 to 500 database queries, depending on the page.
- Some things just cannot be made fast enough.
 - So we cheat.

CPU Bottlenecks

- Modern CPUs are crazy-fast.
- We do try to make our code efficient, but we don't go nuts optimizing it to death. Efficient algorithms are more important than micro-optimizations.

CPU Bottlenecks

- Lesson 1: Don't cheap out on hardware.
- Lesson 2: If you do cheap out on hardware, you will have angry customers and lose far more money than you save.

RAM Bottlenecks

- RAM can be a limiting resource.
- Our Perl scanning processes are memoryhungry! Plan on allocating 100MB for each scanning process.
- If you do start swapping, it's game over. The system will spiral down to a horrible death.
- So don't ever let your systems swap!!! It will give you bad memories.

Network Bottlenecks

- Network bottlenecks are not typically a problem unless you cheap out on hardware or connectivity (see Lessons 1 and 2).
- However, if you design your cluster badly, network bottlenecks *can* bite you.
 - It might seem like a good idea to operate two data centres 200km apart linked over the public Internet.
 - We did that for a while. The intra-cluster latency was killing us.

Network Bottlenecks - 2

- Although geographically-dispersed clusters are appealing from the point of view of robustness, unless you have a *reliable, low-latency* link between the sites, it's not worth the trouble.
- We had two Hosted Canlt data centres (Rogers in Kanata and iWeb in Montreal.)
- Closed the iWeb one and consolidated everything in Rogers.

Disk Bottlenecks – The #1 Killer

 Disk I/O bandwidth is typically the most important performance-killer.

- Mail queues are on disk and files must be sync'd before an SMTP transaction can be ack'd.
 - Thou Shalt Lose No Mail
 - Though Spam it May Be
 - And Thou Shalt Not take the Name of thy Postmaster in vain

Disk Bottlenecks - 2

- A database transaction *cannot* complete until it's safely stored on disk.
 - Thou Shalt Lose No Transactions
 - Though Pointless they May Be
 - And Thou Shalt Not take the Name of thy DBA in vain.

Disk Bottlenecks - 3

- Message bodies are stored in files by the Storage Manager servers.
- A message cannot be considered safely in the quarantine until it is sync'd to disk.
 - Thou Shalt Lose No Quarantined Message
 - Spam Though it Almost Certainly Is
 - Thou Shalt Not take the Name of Prince Abdiki Mumbassa of Nigeria with his 5 Million United States Dollars in vain.

Scaling in Real Life (so-called)

- So... how do we scale up?
- Hosted CanIt filters email for about 160,000 users.
 - That makes it 160 micro-Googles.
- We peak at about 116 messages/second or 10 million messages per day.
- Average weekday traffic is 4.5 million messages.

CPU and RAM

- We buy good servers!
 - SuperMicro Rackmount servers.
 - Our newest servers have 512GB RAM.
 - Total of 16 CPU cores per server (Intel Xeon E5-2623 at 3GHz.)
 - We do not configure any swap space.
 - If we run out of RAM at 512GB, we have problems that swap won't fix.

Disk

- Good disk performance is *the key* to making everything work.
- We still use traditional spinning hard drives.
- Linux Software RAID-10 FTW!!!
- We keep two copies of each chunk.
- Given n drives, capacity = n/2 * single drive.
- Read performance ~ n * single drive.
- Write performance ~ n/2 * single drive.

Disk - 2

- Newest-generation servers: 16 x 2TB SATA drives.
- Storage capacity: 16TB
- hdparm -t output: Timing buffered disk reads: 900 MB in 3.00 seconds = 299.94 MB/sec
- We have a hardware RAID controller, but use Linux Software RAID for ease of management. Performance is decent.

Disk - 3

- RAID controller has a BBU that lets it flush data to disks safely even in the event of a power failure.
- Greatly improves write performance as the RAID controller can tell "white lies" to the OS.

Database Failover

- The central PostgreSQL database is a single point of failure.
- We use PostgreSQL's built-in streaming replication to run a second database server in hot-standby mode.
- Cron jobs automatically check the health of the primary and fail over to the secondary if necessary.

Database Failover - 2

- We could balance read-transactions over the master and the hot-standby database.
- But we don't (yet) need to do this.
 - When we were using two data centres and had the primary / secondary DB machines in different locations, it helped a lot.
 - But this was because of the high-latency link between the sites, not because we were stressing the primary DB server.

Cheating for Fun and Profit

- Some operations are inherently slow.
 - Updating Bayes statistics
 - Remailing messages out of quarantine
 - Indexing archived mail
- We can't make them fast. But we can make them *seem* fast.

Cheating for Fun and Profit - 2

- When a user initiates a slow operation in the Web interface, or when something really slow has to happen in the delivery path...
- ... we just make a note to get around to it later.
- A background task periodically runs the work queue and does all the actual work.
- Note that you have to monitor this to make sure the system can keep up on average.

Other Systems Suck

- Hosted CanIt connects to thousands of backend SMTP, IMAP, POP3, and LDAP servers.
- Not all of them are as (*ahem*) well-managed and reliable as Hosted CanIt.
- We used the *circuit-breaker* design pattern to avoid getting bogged down by unresponsive servers.
 - If a back-end server is unresponsive after X tries, we mark it down and fail fast for the next Y minutes, after which we test again.

RTFM

- In order to reduce our support load, CanIt performs many diagnostics on the back-end servers and reports them in a helpful format to system administrators.
- This has not reduced our support load.
- Nobody reads. Nobody cares. I am bitter.

Management

- Our Hosted CanIt cluster consists of 17 servers (mostly real; a few VMs.)
- They are all identical Debian 8 machines.
 - Having identical boxes greatly eases administration!
- We use **ClusterSSH** to open terminals on all of them if we need to run the same command on all.

Monitoring

- Xymon monitors the health of the cluster
 - Are SSH/SMTP/HTTPS listening?
 - Are queue sizes, free disk space, load OK?
 - Are various CanIt scanning statistics OK?
 - How about round-trip email time?
 - And web response time?
- Sends text message to cell phone if problems are noticed

DEMO

• Live demo of CanIt if Internet access permits...

Questions?

• <

Links

- Roaring Penguin: https://www.roaringpenguin.com/
 - RT: https://bestpract
- MIMEDefang:
- Milter:
- Xymon:
- Munin:
- PostgreSQL:
- SW RAID 10:
- ClusterSSH:
- Shameless Self-Promotion:

https://bestpractical.com/ http://www.mimedefang.org/ https://en.wikipedia.org/wiki/Milter https://www.xymon.org/ http://munin-monitoring.org/ https://www.postgresql.org/ http://tinyurl.com/lx6mx5p https://github.com/duncs/clusterssh/wiki

https://dianne.skoll.ca/comedy/

